

🚀 Explore the API Data Now!
Connect to Brazil’s options market and access option collars, trading algorithms, and more.
What Kind of Trader Do You Want to Be?
Bull or bear. Long or short. Our high-performance trading API is free—your edge starts now.

Advanced Mathematics for Trading
$C = S_0 N(d_1) - K e^{-rT} N(d_2)$
$d_1 = \frac{\ln(S_0 / K) + (r + \frac{\sigma^2}{2})T}{\sigma \sqrt{T}}, \quad d_2 = d_1 - \sigma \sqrt{T}$
// Black-Scholes formula for European call option
double BlackScholesCall(double S, double K, double T, double r, double sigma) {
double d1 = (log(S / K) + (r + 0.5 * sigma * sigma) * T) / (sigma * sqrt(T));
double d2 = d1 - sigma * sqrt(T);
return S * NormalCDF(d1) - K * exp(-r * T) * NormalCDF(d2);
}
$C - P = S_0 - K e^{-rT}$
// Put-Call Parity relation
double PutCallParity(double callPrice, double S, double K, double r, double T) {
return callPrice - S + K * exp(-r * T);
}
$N(x) = \frac{1}{2} \operatorname{erfc}\left(-\frac{x}{\sqrt{2}}\right)$
// Approximate CDF for the standard normal distribution
double NormalCDF(double x) {
return 0.5 * erfc(-x / sqrt(2));
}